Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.549
Filtrar
1.
Biol Trace Elem Res ; 202(1): 210-220, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37088826

RESUMO

In leishmaniasis, the protective immunity is largely mediated by proinflammatory cytokine producing abilities of T cells and an efficient parasite killing by phagocytic cells. Notwithstanding a substantial progress that has been made during last decades, the mechanisms or factors involved in establishing protective immunity against Leishmania are not identified. In ancient Indian literature, metallic "bhasma," particularly that of "swarna" or gold (fine gold particles), is indicated as one of the most prominent metal-based therapeutic medicine, which is known to impart protective and curative properties in various health issues. In this work, we elucidated the potential of swarna bhasma (SB) on the effector properties of phagocytes and antigen-activated CD4+ T cells in augmenting the immunogenicity of L. donovani antigens. The characterization of SB revealing its shape, size, composition, and measurement of cytotoxicity established the physiochemical potential for its utilization as an immunomodulator. The activation of macrophages with SB enhanced their capacity to produce nitric oxide and proinflammatory cytokines, which eventually resulted in reduced uptake of parasites and their proliferation in infected cells. Further, in Leishmania-infected animals, SB administration reduced the generation of IL-10, an anti-inflammatory cytokine, and enhanced pro-inflammatory cytokine generation by antigen activated CD4+ T cells with increased frequency of double (IFNγ+/TNFα+) and triple (IFNγ+TNFα+IL-2+) positive cells and abrogated disease pathogeneses at the early days of infection. Our results also suggested that cow-ghee (A2) emulsified preparation of SB, either alone or with yashtimadhu, a known natural immune modulator which enhances the SB's potential in enhancing the immunogenicity of parasitic antigens. These findings suggested a definite potential of SB in enhancing the effector functions of phagocytes and CD4+ T cells against L. donovani antigens. Therefore, more studies are needed to elucidate the mechanistic details of SB and its potential in enhancing vaccine-induced immunity.


Assuntos
Apresentação de Antígeno , Antígenos de Protozoários , Linfócitos T CD4-Positivos , Calotropis , Ouro , Látex , Leishmania donovani , Macrófagos , Ayurveda , Células Th1 , Arsênio , Combinação de Medicamentos , Ouro/administração & dosagem , Ouro/farmacologia , Látex/administração & dosagem , Látex/farmacologia , Chumbo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Linfócitos T CD4-Positivos/imunologia , Fagócitos/efeitos dos fármacos , Fagócitos/imunologia , Leishmaniose/imunologia , Leishmaniose/parasitologia , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/crescimento & desenvolvimento , Leishmania donovani/imunologia , Antígenos de Protozoários/imunologia , Células Th1/imunologia , Animais , Camundongos , Células RAW 264.7 , Feminino , Camundongos Endogâmicos BALB C
2.
Front Cell Infect Microbiol ; 12: 941888, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992159

RESUMO

Leishmania RNA virus 1 (LRV1) is a double-stranded RNA virus found in some strains of the human protozoan parasite Leishmania, the causative agent of leishmaniasis, a neglected tropical disease. Interestingly, the presence of LRV1 inside Leishmania constitutes an important virulence factor that worsens the leishmaniasis outcome in a type I interferon (IFN)-dependent manner and contributes to treatment failure. Understanding how macrophages respond toward Leishmania alone or in combination with LRV1 as well as the role that type I IFNs may play during infection is fundamental to oversee new therapeutic strategies. To dissect the macrophage response toward infection, RNA sequencing was performed on murine wild-type and Ifnar-deficient bone marrow-derived macrophages infected with Leishmania guyanensis (Lgy) devoid or not of LRV1. Additionally, macrophages were treated with poly I:C (mimetic virus) or with type I IFNs. By implementing a weighted gene correlation network analysis, the groups of genes (modules) with similar expression patterns, for example, functionally related, coregulated, or the members of the same functional pathway, were identified. These modules followed patterns dependent on Leishmania, LRV1, or Leishmania exacerbated by the presence of LRV1. Not only the visualization of how individual genes were embedded to form modules but also how different modules were related to each other were observed. Thus, in the context of the observed hyperinflammatory phenotype associated to the presence of LRV1, it was noted that the biomarkers tumor-necrosis factor α (TNF-α) and the interleukin 6 (IL-6) belonged to different modules and that their regulating specific Src-family kinases were segregated oppositely. In addition, this network approach revealed the strong and sustained effect of LRV1 on the macrophage response and genes that had an early, late, or sustained impact during infection, uncovering the dynamics of the IFN response. Overall, this study contributed to shed light and dissect the intricate macrophage response toward infection by the Leishmania-LRV1 duo and revealed the crosstalk between modules made of coregulated genes and provided a new resource that can be further explored to study the impact of Leishmania on the macrophage response.


Assuntos
Interferon Tipo I , Leishmania , Leishmaniose , Leishmaniavirus , Macrófagos , Animais , Humanos , Interferon Tipo I/imunologia , Leishmania/virologia , Leishmaniose/imunologia , Leishmaniose/parasitologia , Leishmaniose/virologia , Macrófagos/imunologia , Macrófagos/parasitologia , Camundongos
3.
Front Immunol ; 13: 762080, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35145518

RESUMO

Leishmania spp. infection outcomes are dependent on both host and parasite factors. Manipulation of host signaling pathways involved in the generation of immune responses is thought to be one of the most common mechanisms used by parasites for persistence within the host. Considering the diversity of pathologies caused by different Leishmania spp., it is plausible that significant differences may exist in the mechanisms of host cell manipulation by each parasite species, which may have implications when developing new vaccine or treatment strategies. Here we show that in L. braziliensis-infection in BALB/c mice, a model of resistance, activation of ERK1/2 coincides with the peak of inflammatory responses and resolution of tissue parasitism. In contrast, in the susceptibility model of L. amazonensis-infection, an early silent phase of infection is observed, detected solely by quantification of parasite loads. At this early stage, only basal levels of P-ERK1/2 are observed. Later, after a brief shutdown of ERK1/2 phosphorylation, disease progression is observed and is associated with increased inflammation, lesion size and tissue parasitism. Moreover, the short-term down-regulation of ERK1/2 activation affected significantly downstream inflammatory pathways and adaptive T cell responses. Administration of U0126, a MEK/ERK inhibitor, confirmed this phenomenon, since bigger lesions and higher parasite loads were seen in infected mice that received U0126. To investigate how kinetics of ERK1/2 activation could affect the disease progression, U0126 was administered to L. amazonensis-infected animals earlier than the P-ERK1/2 switch off time-point. This intervention resulted in anticipation of the same effects on inflammatory responses and susceptibility phenotype seen in the natural course of infection. Additionally, in vitro inhibition of ERK1/2 affected the phagocytosis of L. amazonensis by BMDMs. Collectively, our findings reveal distinct temporal patterns of activation of inflammatory responses in L. braziliensis and L. amazonensis in the same animal background and a pivotal role for a brief and specific shutdown of ERK1/2 activation at late stages of L. amazonensis infection. Since activation of inflammatory responses is a crucial aspect for the control of infectious processes, these findings may be important for the search of new and specific strategies of vaccines and treatment for tegumentary leishmaniasis.


Assuntos
Imunidade Celular , Leishmania mexicana/imunologia , Leishmaniose/imunologia , Leishmaniose/metabolismo , Leishmaniose/parasitologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Animais , Biomarcadores , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Interações Hospedeiro-Patógeno/imunologia , Mediadores da Inflamação/metabolismo , Leishmaniose/patologia , Camundongos , Carga Parasitária , Fagocitose/imunologia , Fosforilação , Transdução de Sinais
4.
Infect Genet Evol ; 98: 105210, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35031509

RESUMO

γδ T cells are thymus derived heterogeneous and unconventional T- lymphocyte expressing TCR γ (V γ9) and TCRδ (Vδ2) chain and play an important role in connecting innate and adaptive armaments of immune response. These cells can recognize wide ranges of antigens even without involvement of major histocompatibility complex and exert their biological functions by cytotoxicity or activating various types of immune cells. In recent past, γδ T cells have emerged as an important player during protozoa infection and rapidly expand after exposure with them. They have also been widely studied in vaccine induced immune response against many bacterial and protozoan infections with improved clinical outcome. In this review, we will discuss the various roles of γδ T cells in immunity against malaria and leishmaniasis, the two important protozoan diseases causing significant mortality and morbidity throughout the world.


Assuntos
Imunidade Inata , Linfócitos Intraepiteliais/imunologia , Leishmaniose/imunologia , Malária/imunologia , Humanos
5.
Int Immunopharmacol ; 102: 108400, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34890999

RESUMO

Leishmaniasis, a neglected tropical disease, still remains a global concern for the healthcare sector. The primary causative agents of the disease comprise diverse leishmanial species, leading to recurring failures in disease diagnosis and delaying the initiation of appropriate chemotherapy. Various species of the Leishmania parasite cause diverse clinical manifestations ranging from skin ulcers to systemic infections. Therefore, host immunity in response to different forms of infecting species of Leishmania becomes pivotal in disease progression or regression. Thus, understanding the paradox of immune arsenals during host and parasite interface becomes crucial to eliminate this deadly disease. In the present review, we have elaborated on the immunological perspectives of the disease and discussed primary host immune cells that form a defense line to counteract parasite infection. Furthermore, we also have shed light on the immune cells and effector molecules responsible for parasite survival in host lethal milieu/ environment. Next, we have highlighted recent molecules/compounds showing potent leishmanicidal activities pertaining to their pro-oxidant and immuno-modulatory mechanisms. This review addresses an immuno-biological overview of the factors influencing the parasitic disease, as this knowledge can aid in the unraveling/ identification of potential biomarkers, novel therapeutics, and vaccine candidates against leishmaniasis.


Assuntos
Leishmania/imunologia , Leishmaniose/imunologia , Animais , Interações Hospedeiro-Parasita/imunologia , Humanos , Imunidade Celular
6.
Biomed J ; 45(1): 109-117, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34175493

RESUMO

Leishmaniasis is a neglected tropical disease that causes several clinical manifestations. Parasites of the genus Leishmania cause this disease. Spread across five continents, leishmaniasis is a particular public health problem in developing countries. Leishmania infects phagocytic cells such as macrophages, where it induces adenosine triphosphate (ATP) release at the time of infection. ATP activates purinergic receptors in the cell membranes of infected cells and promotes parasite control by inducing leukotriene B4 release and NLRP3 inflammasome activation. Moreover, uridine triphosphate induces ATP release, exacerbating the immune response. However, ATP may also undergo catalysis by ectonucleotidases present in the parasite membrane, generating adenosine, which activates P1 receptors and induces the production of anti-inflammatory molecules such as prostaglandin E2 and IL-10. These mechanisms culminate in Leishmania's survival. Thus, how Leishmania handles extracellular nucleotides and the activation of purinergic receptors determines the control or the dissemination of the disease.


Assuntos
Leishmania , Leishmaniose , Receptores Purinérgicos , Adenosina , Trifosfato de Adenosina , Dinoprostona/imunologia , Humanos , Interleucina-10/imunologia , Leishmania/fisiologia , Leishmaniose/imunologia , Leucotrieno B4/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Receptores Purinérgicos/metabolismo , Transdução de Sinais
7.
PLoS One ; 16(12): e0262158, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34972189

RESUMO

Leishmaniasis is a disease caused by the protozoan parasite Leishmania and is known to affect millions of individuals worldwide. In recent years, we have established the critical role played by Leishmania zinc-metalloprotease GP63 in the modulation of host macrophage signalling and functions, favouring its survival and progression within its host. Leishmania major lacking GP63 was reported to cause limited infection in mice, however, it is still unclear how GP63 may influence the innate inflammatory response and parasite survival in an in vivo context. Therefore, we were interested in analyzing the early innate inflammatory events upon Leishmania inoculation within mice and establish whether Leishmania GP63 influences this initial inflammatory response. Experimentally, L. major WT (L. majorWT), L. major GP63 knockout (L. majorKO), or L. major GP63 rescue (L. majorR) were intraperitoneally inoculated in mice and the inflammatory cells recruited were characterized microscopically and by flow cytometry (number and cell type), and their infection determined. Pro-inflammatory markers such as cytokines, chemokines, and extracellular vesicles (EVs, e.g. exosomes) were monitored and proteomic analysis was performed on exosome contents. Data obtained from this study suggest that Leishmania GP63 does not significantly influence the pathogen-induced inflammatory cell recruitment, but rather their activation status and effector function. Concordantly, internalization of promastigotes during early infection could be influenced by GP63 as fewer L. majorKO amastigotes were found within host cells and appear to maintain in host cells over time. Collectively this study provides a clear analysis of innate inflammatory events occurring during L. major infection and further establish the prominent role of the virulence factor GP63 to provide favourable conditions for host cell infection.


Assuntos
Leishmania major/metabolismo , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Leishmaniose/imunologia , Leishmaniose/parasitologia , Metaloendopeptidases/química , Animais , Biologia Computacional , Exossomos/metabolismo , Feminino , Interações Hospedeiro-Parasita/fisiologia , Inflamação/imunologia , Inflamação/metabolismo , Leishmania , Metaloproteases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Proteômica/métodos , RNA-Seq
8.
Front Immunol ; 12: 780810, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899745

RESUMO

Background: Trypanosomatids are protozoa responsible for a wide range of diseases, with emphasis on Chagas Disease (CD) and Leishmaniasis, which are in the list of most relevant Neglected Tropical Diseases (NTD) according to World Health Organization (WHO). During the infectious process, immune system is immediately activated, and parasites can invade nucleated cells through a broad diversity of receptors. The complement system - through classical, alternative and lectin pathways - plays a role in the first line of defense against these pathogens, acting in opsonization, phagocytosis and lysis of parasites. Genetic modifications in complement genes, such as Single Nucleotide Polymorphisms (SNPs), can influence host susceptibility to these parasites and modulate protein expression. Methods: In March and April 2021, a literature search was conducted at the PubMed and Google Scholar databases and the reference lists obtained were verified. After applying the inclusion and exclusion criteria, the selected studies were evaluated and scored according to eleven established criteria regarding their thematic approach and design, aiming at the good quality of publications. Results: Twelve papers were included in this systematic review: seven investigating CD and five focusing on Leishmaniasis. Most articles presented gene and protein approaches, careful determination of experimental groups, and adequate choice of experimental techniques, although several of them were not up-to-date. Ten studies explored the association of polymorphisms and haplotypes with disease progression, with emphasis on lectin complement pathway genes. Decreased and increased patient serum protein levels were associated with susceptibility to CD and Visceral Leishmaniasis, respectively. Conclusion: This systematic review shows the influence of genetic alterations in complement genes on the progression of several infectious diseases, with a focus on conditions caused by trypanosomatids, and contributes suggestions and evidence to improve experimental design in future research proposals.


Assuntos
Doença de Chagas/parasitologia , Ativação do Complemento/genética , Proteínas do Sistema Complemento/genética , Variação Genética , Leishmania/patogenicidade , Leishmaniose/parasitologia , Trypanosoma cruzi/patogenicidade , Doença de Chagas/genética , Doença de Chagas/imunologia , Doença de Chagas/metabolismo , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Progressão da Doença , Predisposição Genética para Doença , Interações Hospedeiro-Parasita , Humanos , Leishmania/imunologia , Leishmaniose/genética , Leishmaniose/imunologia , Leishmaniose/metabolismo , Fenótipo , Medição de Risco , Fatores de Risco , Trypanosoma cruzi/imunologia
9.
Front Immunol ; 12: 750648, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790196

RESUMO

Background: Leishmaniasis is a neglected arthropod-borne disease that affects millions of people worldwide. Successful Leishmania infections require the mitigation of immune cell functions leading to parasite survival and proliferation. A large body of evidence highlights the involvement of neutrophils (PMNs) and dendritic cells (DCs) in the establishment of immunological responses against these parasites. However, few studies, contemplate to what extent these cells interact synergistically to constrain Leishmania infection. Objective: We sought to investigate how PMNs and infected DCs interact in an in vitro model of Leishmania amazonensis infection. Material and Methods: Briefly, human PMNs and DCs were purified from the peripheral blood of healthy donors. Next, PMNs were activated with fibronectin and subsequently co-cultured with L. amazonensis-infected DCs. Results: We observed that L. amazonensis-infected DC exhibited lower rates of infection when co-cultivated with either resting or activated PMNs. Surprisingly, we found that the release of neutrophil enzymes was not involved in Leishmania killing. Next, we showed that the interaction between PMNs and infected-DCs was intermediated by DC-SIGN, further suggesting that parasite elimination occurs in a contact-dependent manner. Furthermore, we also observed that TNFα and ROS production was dependent on DC-SIGN-mediated contact, as well as parasite elimination is dependent on TNFα production in the co-culture. Finally, we observed that direct contact between PMNs and DCs are required to restore the expression of DC maturation molecules during L. amazonensis infection. Conclusion: Our findings suggest that the engagement of direct contact between PMNs and L. amazonensis-infected DC via DC-SIGN is required for the production of inflammatory mediators with subsequent parasite elimination and DC maturation.


Assuntos
Moléculas de Adesão Celular/imunologia , Células Dendríticas/imunologia , Lectinas Tipo C/imunologia , Leishmaniose/imunologia , Neutrófilos/imunologia , Receptores de Superfície Celular/imunologia , Diferenciação Celular , Células Cultivadas , Técnicas de Cocultura , Humanos , Leishmania , Leishmaniose/parasitologia , Fator de Necrose Tumoral alfa/imunologia
10.
Parasit Vectors ; 14(1): 525, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34629081

RESUMO

BACKGROUND: Immunotherapeutic drugs, such as domperidone, have been shown to be promising treatments against canine leishmaniosis (CanL), but limited data are available. The aim of this pilot study (therapeutic, prospective and non-controlled) was to evaluate the effect of domperidone on serum antibody titers of Leishmania infantum, globulins, gamma globulins, acute-phase proteins (e.g. C-reactive protein [CRP]), big endothelin-1 (big ET-1), serum creatinine (SC) and proteinuria in dogs with leishmaniosis affected by chronic kidney disease (CKD). METHODS: Dogs were recruited if "exposed" to or "infected" with L. infantum and affected by CKD (IRIS stage 1 [proteinuric] or IRIS stage 2-3a [SC < 3.5 mg/dl; proteinuric or non-proteinuric]). After inclusion, an oral suspension of domperidone was administered, and the dogs were followed up for 180 days, with checks at 30, 60, 90 and 180 days after initial treatment. RESULTS: Of the 14 recruited dogs, nine showed a statistically significant reduction in SC (χ2 = 9.1, df = 3, P = 0.028), but not in the urine protein/creatinine ratio (χ2 = 6.43, df = 3, P = 0.092). All dogs showed a significant reduction in antibody titers for L. infantum (χ2 = 9.56, df = 2, P = 0.008), globulins (χ2 = 11.08, df = 3, P = 0.011) and gamma globulins (χ2 = 12.38, df = 3, P = 0.006) during the study period. There was also a statistically significant reduction in CRP (χ2 = 16.7, df = 3, P = 0.001), but not in big ET-1 (χ2 = 2.04, df = 3, P = 0.563). CONCLUSIONS: This study provides preliminary results on the ability of domperidone to improve SC and reduce anti-L. infantum antibody titers, globulins, gamma globulins and CRP in dogs with leishmaniosis and CKD.


Assuntos
Anticorpos Antiprotozoários/sangue , Creatinina/sangue , Domperidona/uso terapêutico , Inflamação/sangue , Leishmania infantum/imunologia , Leishmaniose/tratamento farmacológico , Leishmaniose/veterinária , Insuficiência Renal Crônica/tratamento farmacológico , Proteínas de Fase Aguda , Animais , Biomarcadores/sangue , Doenças do Cão/tratamento farmacológico , Doenças do Cão/imunologia , Doenças do Cão/parasitologia , Cães , Feminino , Leishmania infantum/efeitos dos fármacos , Leishmaniose/imunologia , Masculino , Projetos Piloto , Estudos Prospectivos , Insuficiência Renal Crônica/sangue
11.
Immunity ; 54(12): 2724-2739.e10, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34687607

RESUMO

Nitric oxide (NO) is an important antimicrobial effector but also prevents unnecessary tissue damage by shutting down the recruitment of monocyte-derived phagocytes. Intracellular pathogens such as Leishmania major can hijack these cells as a niche for replication. Thus, NO might exert containment by restricting the availability of the cellular niche required for efficient pathogen proliferation. However, such indirect modes of action remain to be established. By combining mathematical modeling with intravital 2-photon biosensors of pathogen viability and proliferation, we show that low L. major proliferation results not from direct NO impact on the pathogen but from reduced availability of proliferation-permissive host cells. Although inhibiting NO production increases recruitment of these cells, and thus pathogen proliferation, blocking cell recruitment uncouples the NO effect from pathogen proliferation. Therefore, NO fulfills two distinct functions for L. major containment: permitting direct killing and restricting the supply of proliferation-permissive host cells.


Assuntos
Leishmania major/fisiologia , Leishmaniose/imunologia , Macrófagos/imunologia , Óxido Nítrico/metabolismo , Animais , Processos de Crescimento Celular , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Humanos , Microscopia Intravital , Camundongos , Camundongos Endogâmicos C57BL , Modelos Teóricos
12.
PLoS Negl Trop Dis ; 15(8): e0009681, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34398874

RESUMO

Vitamin D (VitD) deficiency has been shown to be a risk factor for a plethora of disorders. We have shown that dogs with clinical leishmaniasis presented lower VitD serum levels than non-infected dogs, and even lower than those with asymptomatic infection. However, if VitD deficiency is a risk factor to develop clinical leishmaniasis remains to be answered. It is also unknown if VitD participates in Leishmania control. First, we retrospectively analysed VitD concentration in serum samples from 36 healthy dogs collected in different periods of the year concluding that there isn't a seasonal variation of this vitamin in dogs. We also included 9 dogs with clinical leishmaniasis and 10 non-infected healthy dogs, in which we measured VitD levels at the beginning of the study, when all dogs were negative for serology and qPCR, and 1 year later. Whereas non-infected dogs showed no change in VitD levels along the study, those developing clinical leishmaniasis showed a significant VitD reduction at the end of the study (35%). When we compared VitD concentration between the two groups at the beginning of the study, no differences were detected (43.6 (38-59) ng/mL, P = 0.962). Furthermore, an in vitro model using a canine macrophage cell line proved that adding active VitD leads to a significant reduction in L. infantum load (31.4%). Analyzing expression of genes related to VitD pathway on primary canine monocytes, we showed that CBD103 expression was significantly enhanced after 1,25(OH)2D addition. Our results show that VitD concentration is neither seasonal nor a risk factor for developing canine leishmaniasis, but it diminishes with the onset of clinical disease suggesting a role in parasitic control. Our in vitro results corroborate this hypothesis and point out that VitD regulates infection through CBD103 expression. These results open the possibility for studies testing VitD as an adjuvant in leishmaniasis therapy.


Assuntos
Doenças do Cão/imunologia , Leishmaniose/veterinária , Vitamina D/sangue , beta-Defensinas/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Doenças do Cão/sangue , Doenças do Cão/tratamento farmacológico , Doenças do Cão/genética , Cães , Feminino , Leishmania infantum/fisiologia , Leishmaniose/sangue , Leishmaniose/tratamento farmacológico , Leishmaniose/imunologia , Masculino , Monócitos/imunologia , Estudos Retrospectivos , Estações do Ano , Vitamina D/administração & dosagem , beta-Defensinas/genética
13.
Front Immunol ; 12: 704429, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249011

RESUMO

In the innate immunity to Leishmania infection tissue-resident macrophages and inflammatory monocytes accumulate host-cell, effector, and efferocytosis functions. In addition, neutrophils, as host, effector, and apoptotic cells, as well as tissue-resident and monocyte-derived dendritic cells (DCs) imprint innate and adaptive immunity to Leishmania parasites. Macrophages develop phenotypes ranging from antimicrobial M1 to parasite-permissive M2, depending on mouse strain, Leishmania species, and T-cell cytokines. The Th1 (IFN-γ) and Th2 (IL-4) cytokines, which induce classically-activated (M1) or alternatively-activated (M2) macrophages, underlie resistance versus susceptibility to leishmaniasis. While macrophage phenotypes have been well discussed, new developments addressed the monocyte functional phenotypes in Leishmania infection. Here, we will emphasize the role of inflammatory monocytes to access how potential host-directed therapies for leishmaniasis, such as all-trans-retinoic acid (ATRA) and the ligand of Receptor Activator of Nuclear Factor-Kappa B (RANKL) might modulate immunity to Leishmania infection, by directly targeting monocytes to develop M1 or M2 phenotypes.


Assuntos
Imunidade Adaptativa , Imunidade Inata , Leishmania/imunologia , Leishmaniose/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Animais , Humanos , Macrófagos/parasitologia , Camundongos , Monócitos/parasitologia
14.
Parasitol Res ; 120(8): 2959-2964, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34272999

RESUMO

Visceral leishmaniasis is a severe disease caused by protozoan parasites that include Leishmania (L.) infantum. The disease is established when parasites subvert the immune response of the host. Notably, chemotherapy-based use of antimonial compounds can partially alleviate disease burden. Unfortunately, the resistance to drug treatments is increasing in areas endemic to the disease. In this report, we investigated immune responses within macrophages infected with antimony-resistant L. infantum isolates from patients with a relapse in the disease. Results revealed that antimony-resistant parasites persist in the first 24 h of infection. Activation of macrophage or blocking of thiol production during infection shows enhanced clearance of parasites, which is coordinately associated with increased production of pro-inflammatory cytokines. Taken together, these results suggest that the mechanism of antimony resistance in L. infantum isolates may be related to a decrease in macrophage microbicidal functions.


Assuntos
Antimônio , Resistência a Medicamentos , Leishmania infantum , Leishmaniose/imunologia , Macrófagos/imunologia , Antimônio/farmacologia , Humanos , Leishmania infantum/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Macrófagos/parasitologia , Antimoniato de Meglumina
15.
Front Immunol ; 12: 598943, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211455

RESUMO

Neutrophils play an important role in the outcome of leishmaniasis, contributing either to exacerbating or controlling the progression of infection, a dual effect whose underlying mechanisms are not clear. We recently reported that CD4+ and CD8+ T cells, and dendritic cells of Leishmania amazonensis-infected mice present high expression of PD-1 and PD-L1, respectively. Given that the PD-1/PD-L1 interaction may promote cellular dysfunction, and that neutrophils could interact with T cells during infection, we investigated here the levels of PD-L1 in neutrophils exposed to Leishmania parasites. We found that both, promastigotes and amastigotes of L. amazonensis induced the expression of PD-L1 in the human and murine neutrophils that internalized these parasites in vitro. PD-L1-expressing neutrophils were also observed in the ear lesions and the draining lymph nodes of L. amazonensis-infected mice, assessed through cell cytometry and intravital microscopy. Moreover, expression of PD-L1 progressively increased in neutrophils from ear lesions as the disease evolved to the chronic phase. Co-culture of infected neutrophils with in vitro activated CD8+ T cells inhibits IFN-γ production by a mechanism dependent on PD-1 and PD-L1. Importantly, we demonstrated that in vitro infection of human neutrophils by L braziliensis induced PD-L1+ expression and also PD-L1+ neutrophils were detected in the lesions of patients with cutaneous leishmaniasis. Taken together, these findings suggest that the Leishmania parasite increases the expression of PD-L1 in neutrophils with suppressor capacity, which could favor the parasite survival through impairing the immune response.


Assuntos
Antígeno B7-H1/metabolismo , Leishmania braziliensis/fisiologia , Leishmaniose/imunologia , Neutrófilos/imunologia , Linfócitos T/imunologia , Animais , Antígeno B7-H1/genética , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Terapia de Imunossupressão , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/metabolismo
16.
PLoS Negl Trop Dis ; 15(7): e0009545, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34252099

RESUMO

BACKGROUND: Leishmaniasis is an emerging infectious disease reported in the north and south of Thailand of which patients with HIV/AIDS are a high risk group for acquiring the infection. A lack of information regarding prevalence, and the risk association of Leishmania infection among asymptomatic immunocompetent hosts needs further investigation. Information on potential vectors and animal reservoirs in the affected areas is also important to control disease transmission. METHODS: An outbreak investigation and a cross-sectional study were conducted following one index case of cutaneous leishmaniasis (CL) caused by L. martiniquensis in an immunocompetent male patient reported in August 2015, Chiang Rai Province, Thailand. From September to November 2015, a total of 392 participants at two study areas who were related to the index case, 130 students at a semi-boarding vocational school and 262 hill tribe villagers in the patient's hometown, were recruited in this study. The nested internal transcribed spacer 1-PCR (ITS1-PCR) was performed to detect Leishmania DNA in buffy coat, and nucleotide sequencing was used to identify species. Antibody screening in plasma was performed using the Direct Agglutination Test (DAT), and associated risk factors were analyzed using a standardized questionnaire. Captured sandflies within the study areas were identified and detected for Leishmania DNA using nested ITS1-PCR. Moreover, the animal reservoirs in the study areas were also explored for Leishmania infection. RESULTS: Of 392 participants, 28 (7.1%) were positive for Leishmania infection of which 1 (4.8%) was L. martiniquensis, 12 (57.1%) were L. orientalis and 8 (38.1%) were Leishmania spp. Of 28, 15 (53.6%) were DAT positive. None showed any symptoms of CL or visceral leishmaniasis. Risk factors were associated with being female (adjusted odds ratio, AOR 2.52, 95%CI 1.01-6.26), increasing age (AOR 1.05, 95%CI 1.02-1.08), having an animal enclosure in a housing area (AOR 3.04, 95%CI 1.13-8.22), being exposed to termite mounds (AOR 3.74, 95%CI 1.11-12.58) and having domestic animals in a housing area (AOR 7.11, 95%CI 2.08-24.37). At the semi-boarding vocational school, six Sergentomyia gemmea samples were PCR positive for DNA of L. orientalis and one S. gemmea was PCR positive for DNA of L. donovani/L. infantum. Additionally, one Phlebotomus stantoni was PCR positive for DNA of L. martiniquensis, and one black rat (Rattus rattus) was PCR positive for DNA of L. martiniquensis. CONCLUSION: This information could be useful for monitoring Leishmania infection among immunocompetent hosts in affected areas and also setting up strategies for prevention and control. A follow-up study of asymptomatic individuals with seropositive results as well as those with positive PCR results is recommended.


Assuntos
Leishmania/fisiologia , Leishmaniose/parasitologia , Adolescente , Animais , Animais Domésticos/sangue , Animais Domésticos/parasitologia , Animais Selvagens/sangue , Animais Selvagens/parasitologia , Anticorpos Antiprotozoários/sangue , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Lactente , Insetos Vetores/parasitologia , Leishmania/genética , Leishmania/isolamento & purificação , Leishmaniose/sangue , Leishmaniose/epidemiologia , Leishmaniose/imunologia , Masculino , Psychodidae/parasitologia , Psychodidae/fisiologia , Características de Residência/estatística & dados numéricos , Tailândia/epidemiologia , Adulto Jovem
17.
Microb Pathog ; 158: 105088, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34260904

RESUMO

BACKGROUND: Cells of the innate immune system undergo long-term functional reprogramming in response to Bacillus Calmette-Guérin (BCG) exposure via a process called trained immunity, conferring nonspecific protection to unrelated infections. Here, we investigate whether BCG-induced trained immunity is able to protect against infections caused by different Leishmania spp., protozoa that cause cutaneous and mucosal or visceral lesions. METHODS: We used training models of human monocytes with BCG and subsequent infection by L. braziliensis, L. amazonensis and L. infantum, and the vaccination of wild-type and transgenic mice for IL-32γ before in vivo challenge with parasites. RESULTS: We demonstrated that monocytes trained with BCG presented enhanced ability to kill L. braziliensis, L. amazonensis and L. infantum through increased production of reactive oxygen species. Interleukin (IL)-32 appears to play an essential role in the development of trained immunity. Indeed, BCG exposure induced IL-32 production in human primary monocytes, both mRNA and protein. We have used a human IL-32γ transgenic mouse model (IL-32γTg) to study the effect of BCG vaccination in different Leishmania infection models. BCG vaccination decreased lesion size and parasite load in infections caused by L. braziliensis and reduced the spread of L. amazonensis to other organs in both infected wild-type (WT) and IL-32γTg mice. In addition, BCG reduced the parasite load in the spleen, liver and bone marrow of both WT and IL-32γTg mice infected with L. infantum. BCG vaccination increased inflammatory infiltrate in infected tissues caused by different Leishmania spp. In all infections, the presence of IL-32γ was not mandatory, but it increased the protective and inflammatory effects of BCG-induced training. CONCLUSIONS: BCG's ability to train innate immune cells, providing protection against leishmaniasis, as well as the participation of IL-32γ in this process, pave the way for new treatment strategies for this neglected infectious disease.


Assuntos
Vacina BCG , Interleucinas/imunologia , Leishmania , Leishmaniose , Mycobacterium bovis , Animais , Leishmaniose/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos
18.
Recurso na Internet em Português | LIS - Localizador de Informação em Saúde | ID: lis-48238

RESUMO

O estudo recentemente publicado objetivou a produção de nanopartículas poliméricas contendo 17-DMAG, um inibidor da Hsp90, que é a proteína mais abundante no citosol de células eucarióticas, envolvida na manutenção da homeostase celular.


Assuntos
Leishmaniose/imunologia , Nanopartículas/análise
19.
Am J Trop Med Hyg ; 105(3): 564-572, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34181579

RESUMO

Reports on tropical infections among kidney transplant (KT) recipients have increased in recent years, mainly because of the growing number of KT programs located in tropical and subtropical areas, and greater mobility or migration between different areas of the world. Endemic in emerging and developing regions, like most countries in Latin America, tropical infections are an important cause of morbidity and mortality in this population. Tropical infections in KT recipients may exhibit different pathways for acquisition compared with those in nonrecipients, such as transmission through a graft and reactivation of a latent infection triggered by immunosuppression. Clinical presentation may differ compared with that in immunocompetent patients, and there are also particularities in diagnostic aspects, treatment, and prognosis. KT patients must be screened for latent infections and immunized properly. Last, drug-drug interactions between immunosuppressive agents and drugs used to treat tropical infections are an additional challenge in KT patients. In this review, we summarize the management of tropical infections in KT patients.


Assuntos
Infecções por Arbovirus/diagnóstico , Doença de Chagas/diagnóstico , Transplante de Rim , Leishmaniose/diagnóstico , Estrongiloidíase/diagnóstico , Tuberculose/diagnóstico , Infecções por Arbovirus/imunologia , Infecções por Arbovirus/terapia , Doença de Chagas/imunologia , Doença de Chagas/terapia , Febre de Chikungunya/diagnóstico , Febre de Chikungunya/imunologia , Febre de Chikungunya/terapia , Dengue/diagnóstico , Dengue/imunologia , Dengue/terapia , Rejeição de Enxerto/prevenção & controle , Humanos , Hospedeiro Imunocomprometido , Imunossupressores/uso terapêutico , América Latina , Leishmaniose/imunologia , Leishmaniose/terapia , Estrongiloidíase/imunologia , Estrongiloidíase/terapia , Tuberculose/imunologia , Tuberculose/terapia , Febre Amarela/diagnóstico , Febre Amarela/imunologia , Febre Amarela/terapia , Infecção por Zika virus/diagnóstico , Infecção por Zika virus/imunologia , Infecção por Zika virus/terapia
20.
Front Immunol ; 12: 671582, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093571

RESUMO

Intravital microscopy, such as 2-photon microscopy, is now a mainstay in immunological research to visually characterize immune cell dynamics during homeostasis and pathogen infections. This approach has been especially beneficial in describing the complex process of host immune responses to parasitic infections in vivo, such as Leishmania. Human-parasite co-evolution has endowed parasites with multiple strategies to subvert host immunity in order to establish chronic infections and ensure human-to-human transmission. While much focus has been placed on viral and bacterial infections, intravital microscopy studies during parasitic infections have been comparatively sparse. In this review, we will discuss how in vivo microscopy has provided important insights into the generation of innate and adaptive immunity in various organs during parasitic infections, with a primary focus on Leishmania. We highlight how microscopy-based approaches may be key to providing mechanistic insights into Leishmania persistence in vivo and to devise strategies for better parasite control.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Microscopia Intravital/métodos , Leishmaniose/imunologia , Animais , Humanos , Leishmania/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...